02/02/2021

Relational Boosted Bandits

Ashutosh Kakadiya, Sriraam Natarajan, Balaraman Ravindran

Keywords:

Abstract: Contextual bandits algorithms have become essential in real-world user interaction problems in recent years. However, these algorithms represent context as attribute value representation, which makes them infeasible for real world domains like social networks, which are inherently relational. We propose Relational Boosted Bandits (RB2), a contextual bandits algorithm for relational domains based on (relational) boosted trees. RB2 enables us to learn interpretable and explainable models due to the more descriptive nature of the relational representation. We empirically demonstrate the effectiveness and interpretability of RB2 on tasks such as link prediction, relational classification, and recommendation.

The video of this talk cannot be embedded. You can watch it here:
https://slideslive.com/38948872
(Link will open in new window)
 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at AAAI 2021 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers