02/02/2021

Single Player Monte-Carlo Tree Search Based on the Plackett-Luce Model

Felix Mohr, Viktor Bengs, Eyke Hüllermeier

Keywords:

Abstract: The problem of minimal cost path search is especially difficult when no useful heuristics are available. A common solution is roll-out-based search like Monte Carlo Tree Search (MCTS). However, MCTS is mostly used in stochastic or adversarial environments, with the goal to identify an agent's best next move. For this reason, even though single player versions of MCTS exist, most algorithms, including UCT, are not directly tailored to classical minimal cost path search. We present Plackett-Luce MCTS (PL-MCTS), a path search algorithm based on a probabilistic model over the qualities of successor nodes. We empirically show that PL-MCTS is competitive and often superior to the state of the art.

The video of this talk cannot be embedded. You can watch it here:
https://slideslive.com/38949088
(Link will open in new window)
 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at AAAI 2021 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers