02/02/2021

Weakly-Supervised Hierarchical Models for Predicting Persuasive Strategies in Good-faith Textual Requests

Jiaao Chen, Diyi Yang

Keywords:

Abstract: Modeling persuasive language has the potential to better facilitate our decision-making processes. Despite its importance, computational modeling of persuasion is still in its infancy, largely due to the lack of benchmark datasets that can provide quantitative labels of persuasive strategies to expedite this line of research. To this end, we introduce a large-scale multi-domain text corpus for modeling persuasive strategies in good-faith text requests. Moreover, we design a hierarchical weakly-supervised latent variable model that can leverage partially labeled data to predict such associated persuasive strategies for each sentence, where the supervision comes from both the overall document-level labels and very limited sentence-level labels. Experimental results showed that our proposed method outperformed existing semi-supervised baselines significantly. We have publicly released our code at https://github.com/GT-SALT/Persuasion_Strategy_WVAE.

The video of this talk cannot be embedded. You can watch it here:
https://slideslive.com/38949220
(Link will open in new window)
 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at AAAI 2021 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers