06/12/2021

Automatic Unsupervised Outlier Model Selection

Yue Zhao, Ryan Rossi, Leman Akoglu

Keywords: machine learning, self-supervised learning, meta learning, clustering

Abstract: Given an unsupervised outlier detection task on a new dataset, how can we automatically select a good outlier detection algorithm and its hyperparameter(s) (collectively called a model)? In this work, we tackle the unsupervised outlier model selection (UOMS) problem, and propose MetaOD, a principled, data-driven approach to UOMS based on meta-learning. The UOMS problem is notoriously challenging, as compared to model selection for classification and clustering, since (i) model evaluation is infeasible due to the lack of hold-out data with labels, and (ii) model comparison is infeasible due to the lack of a universal objective function. MetaOD capitalizes on the performances of a large body of detection models on historical outlier detection benchmark datasets, and carries over this prior experience to automatically select an effective model to be employed on a new dataset without any labels, model evaluations or model comparisons. To capture task similarity within our meta-learning framework, we introduce specialized meta-features that quantify outlying characteristics of a dataset. Extensive experiments show that selecting a model by MetaOD significantly outperforms no model selection (e.g. always using the same popular model or the ensemble of many) as well as other meta-learning techniques that we tailored for UOMS. Moreover upon (meta-)training, MetaOD is extremely efficient at test time; selecting from a large pool of 300+ models takes less than 1 second for a new task. We open-source MetaOD and our meta-learning database for practical use and to foster further research on the UOMS problem.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at NeurIPS 2021 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers