02/02/2021

A Bidirectional Multi-paragraph Reading Model for Zero-shot Entity Linking

Hongyin Tang, Xingwu Sun, Beihong Jin, Fuzheng Zhang

Keywords:

Abstract: Recently, a zero-shot entity linking task is introduced to challenge the generalization ability of entity linking models. In this task, mentions must be linked to unseen entities and only the textual information is available. In order to make full use of the documents, previous work has proposed a BERT-based model which can only take fixed length of text as input. However, the key information for entity linking may exist in nearly everywhere of the documents thus the proposed model cannot capture them all. To leverage more textual information and enhance text understanding capability, we propose a bidirectional multi-paragraph reading model for the zero-shot entity linking task. Firstly, the model treats the mention context as a query and matches it with multiple paragraphs of the entity description documents. Then, the mention-aware entity representation obtained from the first step is used as a query to match multiple paragraphs in the document containing the mention through an entity-mention attention mechanism. In particular, a new pre-training strategy is employed to strengthen the representative ability. Experimental results show that our bidirectional model can capture long-range context dependencies and outperform the baseline model by 3-4% in terms of accuracy.

The video of this talk cannot be embedded. You can watch it here:
https://slideslive.com/38948739
(Link will open in new window)
 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at AAAI 2021 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers