04/07/2020

Adversarial and Domain-Aware BERT for Cross-Domain Sentiment Analysis

Chunning Du, Haifeng Sun, Jingyu Wang, Qi Qi, Jianxin Liao

Keywords: Cross-Domain Analysis, Cross-domain classification, unsupervised adaptation, transferring knowledge

Abstract: Cross-domain sentiment classification aims to address the lack of massive amounts of labeled data. It demands to predict sentiment polarity on a target domain utilizing a classifier learned from a source domain. In this paper, we investigate how to efficiently apply the pre-training language model BERT on the unsupervised domain adaptation. Due to the pre-training task and corpus, BERT is task-agnostic, which lacks domain awareness and can not distinguish the characteristic of source and target domain when transferring knowledge. To tackle these problems, we design a post-training procedure, which contains the target domain masked language model task and a novel domain-distinguish pre-training task. The post-training procedure will encourage BERT to be domain-aware and distill the domain-specific features in a self-supervised way. Based on this, we could then conduct the adversarial training to derive the enhanced domain-invariant features. Extensive experiments on Amazon dataset show that our model outperforms state-of-the-art methods by a large margin. The ablation study demonstrates that the remarkable improvement is not only from BERT but also from our method.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at ACL 2020 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers