19/08/2021

Conditional Self-Supervised Learning for Few-Shot Classification

Yuexuan An, Hui Xue, Xingyu Zhao, Lu Zhang

Keywords: Machine Learning, Classification, Transfer, Adaptation, Multi-task Learning, Unsupervised Learning

Abstract: How to learn a transferable feature representation from limited examples is a key challenge for few-shot classification. Self-supervision as an auxiliary task to the main supervised few-shot task is considered to be a conceivable way to solve the problem since self-supervision can provide additional structural information easily ignored by the main task. However, learning a good representation by traditional self-supervised methods is usually dependent on large training samples. In few-shot scenarios, due to the lack of sufficient samples, these self-supervised methods might learn a biased representation, which more likely leads to the wrong guidance for the main tasks and finally causes the performance degradation. In this paper, we propose conditional self-supervised learning (CSS) to use auxiliary information to guide the representation learning of self-supervised tasks. Specifically, CSS leverages supervised information as prior knowledge to shape and improve the learning feature manifold of self-supervision without auxiliary unlabeled data, so as to reduce representation bias and mine more effective semantic information. Moreover, CSS exploits more meaningful information through supervised and the improved self-supervised learning respectively and integrates the information into a unified distribution, which can further enrich and broaden the original representation. Extensive experiments demonstrate that our proposed method without any fine-tuning can achieve a significant accuracy improvement on the few-shot classification scenarios compared to the state-of-the-art few-shot learning methods.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at IJCAI 2021 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers