12/07/2020

Time-Consistent Self-Supervision for Semi-Supervised Learning

Tianyi Zhou, Shengjie Wang, Jeff Bilmes

Keywords: Unsupervised and Semi-Supervised Learning

Abstract: Semi-supervised learning (SSL) leverages unlabeled data when training a model with insufficient labeled data. A common strategy for SSL is to enforce the consistency of model outputs between similar samples, e.g., neighbors or data augmentations of the same sample. However, model outputs can vary dramatically on unlabeled data over different training stages, e.g., when using large learning rates. This can introduce harmful noises and inconsistent objectives over time that may lead to concept drift and catastrophic forgetting. In this paper, we study the dynamics of neural net outputs in SSL and show that selecting and using first the unlabeled samples with more consistent outputs over the course of training (i.e., "time-consistency") can improve the final test accuracy and save computation. Under the time-consistent data selection, we design an SSL objective composed of two self-supervised losses, i.e., a consistency loss between a sample and its augmentation, and a contrastive loss encouraging different samples to have different outputs. Our approach achieves SOTA on several SSL benchmarks with much fewer computations.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at ICML 2020 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers