03/05/2021

Local Convergence Analysis of Gradient Descent Ascent with Finite Timescale Separation

Tanner Fiez, Lillian J Ratliff

Keywords: equilibrium, gradient descent-ascent, continuous games, game theory, theory, convergence, generative adversarial networks

Abstract: We study the role that a finite timescale separation parameter $\tau$ has on gradient descent-ascent in non-convex, non-concave zero-sum games where the learning rate of player 1 is denoted by $\gamma_1$ and the learning rate of player 2 is defined to be $\gamma_2=\tau\gamma_1$. We provide a non-asymptotic construction of the finite timescale separation parameter $\tau^{\ast}$ such that gradient descent-ascent locally converges to $x^{\ast}$ for all $\tau \in (\tau^{\ast}, \infty)$ if and only if it is a strict local minmax equilibrium. Moreover, we provide explicit local convergence rates given the finite timescale separation. The convergence results we present are complemented by a non-convergence result: given a critical point $x^{\ast}$ that is not a strict local minmax equilibrium, we present a non-asymptotic construction of a finite timescale separation $\tau_{0}$ such that gradient descent-ascent with timescale separation $\tau\in (\tau_0, \infty)$ does not converge to $x^{\ast}$. Finally, we extend the results to gradient penalty regularization methods for generative adversarial networks and empirically demonstrate on CIFAR-10 and CelebA the significant impact timescale separation has on training performance.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at ICLR 2021 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers