06/12/2021

Rethinking gradient sparsification as total error minimization

Atal Sahu, Aritra Dutta, Ahmed M. Abdelmoniem, Trambak Banerjee, Marco Canini, Panos Kalnis

Keywords: deep learning, optimization

Abstract: Gradient compression is a widely-established remedy to tackle the communication bottleneck in distributed training of large deep neural networks (DNNs). Under the error-feedback framework, Top-$k$ sparsification, sometimes with $k$ as little as 0.1% of the gradient size, enables training to the same model quality as the uncompressed case for a similar iteration count. From the optimization perspective, we find that Top-$k$ is the communication-optimal sparsifier given a per-iteration $k$ element budget.We argue that to further the benefits of gradient sparsification, especially for DNNs, a different perspective is necessary — one that moves from per-iteration optimality to consider optimality for the entire training.We identify that the total error — the sum of the compression errors for all iterations — encapsulates sparsification throughout training. Then, we propose a communication complexity model that minimizes the total error under a communication budget for the entire training. We find that the hard-threshold sparsifier, a variant of the Top-$k$ sparsifier with $k$ determined by a constant hard-threshold, is the optimal sparsifier for this model. Motivated by this, we provide convex and non-convex convergence analyses for the hard-threshold sparsifier with error-feedback. We show that hard-threshold has the same asymptotic convergence and linear speedup property as SGD in both the case, and unlike with Top-$k$ sparsifier, has no impact due to data-heterogeneity. Our diverse experiments on various DNNs and a logistic regression model demonstrate that the hard-threshold sparsifier is more communication-efficient than Top-$k$.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at NeurIPS 2021 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers