06/12/2021

The Implicit Bias of Minima Stability: A View from Function Space

Rotem Mulayoff, Tomer Michaeli, Daniel Soudry

Keywords: deep learning, optimization

Abstract: The loss terrains of over-parameterized neural networks have multiple global minima. However, it is well known that stochastic gradient descent (SGD) can stably converge only to minima that are sufficiently flat w.r.t. SGD's step size. In this paper we study the effect that this mechanism has on the function implemented by the trained model. First, we extend the existing knowledge on minima stability to non-differentiable minima, which are common in ReLU nets. We then use our stability results to study a single hidden layer univariate ReLU network. In this setting, we show that SGD is biased towards functions whose second derivative (w.r.t the input) has a bounded weighted $L_1$ norm, and this is regardless of the initialization. In particular, we show that the function implemented by the network upon convergence gets smoother as the learning rate increases. The weight multiplying the second derivative is larger around the center of the support of the training distribution, and smaller towards its boundaries, suggesting that a trained model tends to be smoother at the center of the training distribution.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at NeurIPS 2021 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd

Similar Papers