26/04/2020

ProxSGD: Training Structured Neural Networks under Regularization and Constraints

Yang Yang, Yaxiong Yuan, Avraam Chatzimichailidis, Ruud JG van Sloun, Lei Lei, Symeon Chatzinotas

Keywords: stochastic gradient descent, regularization, constrained optimization, nonsmooth optimization

Abstract: In this paper, we consider the problem of training neural networks (NN). To promote a NN with specific structures, we explicitly take into consideration the nonsmooth regularization (such as L1-norm) and constraints (such as interval constraint). This is formulated as a constrained nonsmooth nonconvex optimization problem, and we propose a convergent proximal-type stochastic gradient descent (Prox-SGD) algorithm. We show that under properly selected learning rates, momentum eventually resembles the unknown real gradient and thus is crucial in analyzing the convergence. We establish that with probability 1, every limit point of the sequence generated by the proposed Prox-SGD is a stationary point. Then the Prox-SGD is tailored to train a sparse neural network and a binary neural network, and the theoretical analysis is also supported by extensive numerical tests.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at ICLR 2020 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers