19/04/2021

Multilingual entity and relation extraction dataset and model

Alessandro Seganti, Klaudia Firląg, Helena Skowronska, Michał Satława, Piotr Andruszkiewicz

Keywords:

Abstract: We present a novel dataset and model for a multilingual setting to approach the task of Joint Entity and Relation Extraction. The SMiLER dataset consists of 1.1 M annotated sentences, representing 36 relations, and 14 languages. To the best of our knowledge, this is currently both the largest and the most comprehensive dataset of this type. We introduce HERBERTa, a pipeline that combines two independent BERT models: one for sequence classification, and the other for entity tagging. The model achieves micro F1 81.49 for English on this dataset, which is close to the current SOTA on CoNLL, SpERT.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at EACL 2021 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers