05/12/2020

Fairseq S2T: Fast speech-to-text modeling with fairseq

Changhan Wang, Yun Tang, Xutai Ma, Anne Wu, Dmytro Okhonko, Juan Pino

Keywords:

Abstract: We introduce fairseq S2T, a fairseq extension for speech-to-text (S2T) modeling tasks such as end-to-end speech recognition and speech-to-text translation. It follows fairseq’s careful design for scalability and extensibility. We provide end-to-end workflows from data pre-processing, model training to offline (online) inference. We implement state-of-the-art RNN-based as well as Transformer-based models and open-source detailed training recipes. Fairseq’s machine translation models and language models can be seamlessly integrated into S2T workflows for multi-task learning or transfer learning. Fairseq S2T is available at https://github.com/pytorch/fairseq/tree/master/examples/speech_to_text.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at AACL 2020 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd

Similar Papers