01/07/2020

RobertNLP at the IWPT 2020 Shared Task: Surprisingly Simple Enhanced UD Parsing for English

Stefan Grünewald, Annemarie Friedrich

Keywords:

Abstract: This paper presents our system at the IWPT 2020 Shared Task on Parsing into Enhanced Universal Dependencies. Using a biaffine classifier architecture (Dozat and Manning, 2017) which operates directly on finetuned RoBERTa embeddings, our parser generates enhanced UD graphs by predicting the best dependency label (or absence of a dependency) for each pair of tokens in the sentence. We address label sparsity issues by replacing lexical items in relations with placeholders at prediction time, later retrieving them from the parse in a rule-based fashion. In addition, we ensure structural graph constraints using a simple set of heuristics. On the English blind test data, our system achieves a very high parsing accuracy, ranking 1st out of 10 with an ELAS F1 score of 88.94%.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at ACL Workshops virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers