14/09/2020

A³ : Activation Anomaly Analysis

Philip Sperl, Jan-Philipp Schulze, Konstantin Böttinger

Keywords: anomaly detection, deep learning, intrusion detection, semi-supervised learning, coverage analysis, data mining, it security

Abstract: Inspired by recent advances in coverage-guided analysis of neural networks, we propose a novel anomaly detection method. We show that the hidden activation values contain information useful to distinguish between normal and anomalous samples. Our approach combines three neural networks in a purely data-driven end-to-end model. Based on the activation values in the target network, the alarm network decides if the given sample is normal. Thanks to the anomaly network, our method even works in semi-supervised settings. Strong anomaly detection results are achieved on common data sets surpassing current baseline methods. Our semi-supervised anomaly detection method allows to inspect large amounts of data for anomalies across various applications.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at ECML PKDD 2020 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers