07/09/2020

Robust Ensemble Model Training via Random Layer Sampling Against Adversarial Attack

Hakmin Lee, Hong Joo Lee, Seong Tae Kim, Yong Man Ro

Keywords: ensemble model, adversarial attack, adversarial defense, adversarial robustnessl, random layer sampling

Abstract: Deep neural networks have achieved substantial achievements in several computer vision areas, but have vulnerabilities that are often fooled by adversarial examples that are not recognized by humans. This is an important issue for security or medical applications. In this paper, we propose an ensemble model training framework with random layer sampling to improve the robustness of deep neural networks. In the proposed training framework, we generate various sampled model through the random layer sampling and update the weight of the sampled model. After the ensemble models are trained, it can hide the gradient efficiently and avoid the gradient-based attack by the random layer sampling method. To evaluate our proposed method, comprehensive and comparative experiments have been conducted on three datasets. Experimental results show that the proposed method improves the adversarial robustness.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at BMVC 2020 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd

Similar Papers