18/07/2021

Transfer-Based Semantic Anomaly Detection

Lucas Deecke, Lukas Ruff, Rob Vandermeulen, Hakan Bilen

Keywords: Algorithms, Unsupervised Learning

Abstract: Detecting semantic anomalies is challenging due to the countless ways in which they may appear in real-world data. While enhancing the robustness of networks may be sufficient for modeling simplistic anomalies, there is no good known way of preparing models for all potential and unseen anomalies that can potentially occur, such as the appearance of new object classes. In this paper, we show that a previously overlooked strategy for anomaly detection (AD) is to introduce an explicit inductive bias toward representations transferred over from some large and varied semantic task. We rigorously verify our hypothesis in controlled trials that utilize intervention, and show that it gives rise to surprisingly effective auxiliary objectives that outperform previous AD paradigms.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at ICML 2021 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers