14/09/2020

Model Monitoring and Dynamic Model Selection in Travel Time-series Forecasting

Rosa Candela, Pietro Michiardi, Maurizio Filippone, Maria A. Zuluaga

Keywords: model monitoring, model maintenance, time-series, forecasting

Abstract: Accurate travel products price forecasting is a highly desired feature that allows customers to take informed decisions about purchases, and companies to build and offer attractive tour packages. Thanks to machine learning (ML), it is now relatively cheap to develop highly accurate statistical models for price time-series forecasting. However, once models are deployed in production, it is their monitoring, maintenance and improvement which carry most of the costs and difficulties over time. We introduce a data-driven framework to continuously monitor and maintain deployed time-series forecasting models’ performance, to guarantee stable performance of travel products price forecasting models. Under a supervised learning approach, we predict the errors of time-series forecasting models over time, and use this predicted performance measure to achieve both model monitoring and maintenance. We validate the proposed method on a dataset of 18K time-series from flight and hotel prices collected over two years and on two public benchmarks.

 0
 0
 0
 1
This is an embedded video. Talk and the respective paper are published at ECML PKDD 2020 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers