19/10/2020

A deep prediction network for understanding advertiser intent and satisfaction

Liyi Guo, Rui Lu, Haoqi Zhang, Junqi Jin, Zhenzhe Zheng, Fan Wu, Jin Li, Haiyang Xu, Han Li, Wenkai Lu, Jian Xu, Kun Gai

Keywords: advertiser satisfaction prediction, display advertisement, e-commerce, advertiser intent identification

Abstract: For e-commerce platforms such as Taobao and Amazon, advertisers play an important role in the entire digital ecosystem: their behaviors explicitly influence users’ browsing and shopping experience; more importantly, advertiser’s expenditure on advertising constitutes a primary source of platform revenue. Therefore, providing better services for advertisers is essential for the long-term prosperity for e-commerce platforms. To achieve this goal, the ad platform needs to have an in-depth understanding of advertisers in terms of both their marketing intents and satisfaction over the advertising performance, based on which further optimization could be carried out to service the advertisers in the correct direction. In this paper, we propose a novel Deep Satisfaction Prediction Network (DSPN), which models advertiser intent and satisfaction simultaneously. It employs a two-stage network structure where advertiser intent vector and satisfaction are jointly learned by considering the features of advertiser’s action information and advertising performance indicators. Experiments on an Alibaba advertisement dataset and online evaluations show that our proposed DSPN outperforms state-of-the-art baselines and has stable performance in terms of AUC in the online environment. Further analyses show that DSPN not only predicts advertisers’ satisfaction accurately but also learns an explainable advertiser intent, revealing the opportunities to optimize the advertising performance further.

The video of this talk cannot be embedded. You can watch it here:
https://dl.acm.org/doi/10.1145/3340531.3412681#sec-supp
(Link will open in new window)
 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at CIKM 2020 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers