12/07/2020

Budgeted Online Influence Maximization

Pierre Perrault, Zheng Wen, Michal Valko, Jennifer Healey

Keywords: Online Learning, Active Learning, and Bandits

Abstract: We introduce a new budgeted framework for online influence maximization, considering the total cost of an advertising campaign instead of the common cardinality constraint on a chosen influencer set. Our approach models better the real-world setting where the cost of influencers varies and advertizers want to find the best value for their overall social advertising budget. We propose an algorithm assuming an independent cascade diffusion model and edge- level semi-bandit feedback, and provide both theoretical and experimental results. Our analysis is also valid for the cardinality-constraint setting and improves the state of the art regret bound in this case.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at ICML 2020 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers