02/02/2021

Reinforcement Learning-based Product Delivery Frequency Control

Yang Liu, Zhengxing Chen, Kittipat Virochsiri, Juan Wang, Jiahao Wu, Feng Liang

Keywords:

Abstract: Frequency control is an important problem in modern recommender systems. It dictates the delivery frequency of recommendations to maintain product quality and efficiency. For example, the frequency of delivering promotional notifications impacts daily metrics as well as the infrastructure resource consumption (e.g. CPU and memory usage). There remain open questions on what objective we should optimize to represent business values in the long term best, and how we should balance between daily metrics and resource consumption in a dynamically fluctuating environment. We propose a personalized methodology for the frequency control problem, which combines long-term value optimization using reinforcement learning (RL) with a robust volume control technique we termed "Effective Factor". We demonstrate statistically significant improvement in daily metrics and resource efficiency by our method in several notification applications at a scale of billions of users. To our best knowledge, our study represents the first deep RL application on the frequency control problem at such an industrial scale.

The video of this talk cannot be embedded. You can watch it here:
https://slideslive.com/38951123
(Link will open in new window)
 0
 0
 0
 1
This is an embedded video. Talk and the respective paper are published at AAAI 2021 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers