05/01/2021

One-Shot Image Recognition Using Prototypical Encoders With Reduced Hubness

Chenxi Xiao, Naveen Madapana, Juan Wachs

Keywords:

Abstract: Humans have the innate ability to recognize new objects just by looking at sketches of them (also referred as to prototype images). Similarly, prototypical images can be used as an effective visual representations of unseen classes to tackle few-shot learning (FSL) tasks. Our main goal is to recognize unseen hand signs (gestures) traffic-signs, and corporate-logos, by having their iconographic images or prototypes. Previous works proposed to utilize variational prototypical-encoders (VPE) to address FSL problems. While VPE learns an image-to-image translation task efficiently, we discovered that its performance is significantly hampered by the so-called hubness problem and it fails to regulate the representations in the latent space. Hence, we propose a new model (VPE++) that inherently reduces hubness and incorporates contrastive and multi-task losses to increase the discriminative ability of FSL models. Results show that the VPE++ approach can generalize better to the unseen classes and can achieve superior accuracies on logos, traffic signs, and hand gestures datasets as compared to the state-of-the-art.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at WACV 2021 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers