14/06/2020

Hierarchical Pyramid Diverse Attention Networks for Face Recognition

Qiangchang Wang, Tianyi Wu, He Zheng, Guodong Guo

Keywords: diverse attention, pyramid attention, hierarchical bilinear pooling, local representations, multi-scale features, hierarchical information, pose variation, age gap, quality change, face recognition

Abstract: Deep learning has achieved a great success in face recognition (FR), however, few existing models take hierarchical multi-scale local features into consideration. In this work, we propose a hierarchical pyramid diverse attention (HPDA) network. First, it is observed that local patches would play important roles in FR when the global face appearance changes dramatically. Some recent works apply attention modules to locate local patches automatically without relying on face landmarks. Unfortunately, without considering diversity, some learned attentions tend to have redundant responses around some similar local patches, while neglecting other potential discriminative facial parts. Meanwhile, local patches may appear at different scales due to pose variations or large expression changes. To alleviate these challenges, we propose a pyramid diverse attention (PDA) to learn multi-scale diverse local representations automatically and adaptively. More specifically, a pyramid attention is developed to capture multi-scale features. Meanwhile, a diverse learning is developed to encourage models to focus on different local patches and generate diverse local features. Second, almost all existing models focus on extracting features from the last convolutional layer, lacking of local details or small-scale face parts in lower layers. Instead of simple concatenation or addition, we propose to use a hierarchical bilinear pooling (HBP) to fuse information from multiple layers effectively. Thus, the HPDA is developed by integrating the PDA into the HBP. Experimental results on several datasets show the effectiveness of the HPDA, compared to the state-of-the-art methods.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at CVPR 2020 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers