02/02/2021

Tailoring Embedding Function to Heterogeneous Few-Shot Tasks by Global and Local Feature Adaptors

Su Lu, Han-Jia Ye, De-Chuan Zhan

Keywords:

Abstract: Few-Shot Learning (FSL) is essential for visual recognition. Many methods tackle this challenging problem via learning an embedding function from seen classes and transfer it to unseen classes with a few labeled instances. Researchers recently found it beneficial to incorporate task-specific feature adaptation into FSL models, which produces the most representative features for each task. However, these methods ignore the diversity of classes and apply a global transformation to the task. In this paper, we propose Global and Local Feature Adaptor (GLoFA), a unifying framework that tailors the instance representation to specific tasks by global and local feature adaptors. We claim that class-specific local transformation helps to improve the representation ability of feature adaptor. Global masks tend to capture sketchy patterns, while local masks focus on detailed characteristics. A strategy to measure the relationship between instances adaptively based on the characteristics of both tasks and classes endow GLoFA with the ability to handle mix-grained tasks. GLoFA outperforms other methods on a heterogeneous task distribution and achieves competitive results on benchmark datasets.

The video of this talk cannot be embedded. You can watch it here:
https://slideslive.com/38947757
(Link will open in new window)
 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at AAAI 2021 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers