08/12/2020

Dual Attention Network for Cross-lingual Entity Alignment

Jian Sun, Yu Zhou, Chengqing Zong

Keywords:

Abstract: Cross-lingual Entity alignment is an essential part of building a knowledge graph, which can help integrate knowledge among different language knowledge graphs. In the real KGs, there exists an imbalance among the information in the same hierarchy of corresponding entities, which results in the heterogeneity of neighborhood structure, making this task challenging. To tackle this problem, we propose a dual attention network for cross-lingual entity alignment (DAEA). Specifically, our dual attention consists of relation-aware graph attention and hierarchical attention. The relation-aware graph attention aims at selectively aggregating multi-hierarchy neighborhood information to alleviate the difference of heterogeneity among counterpart entities. The hierarchical attention adaptively aggregates the low-hierarchy and the high-hierarchy information, which is beneficial to balance the neighborhood information of counterpart entities and distinguish non-counterpart entities with similar structures. Finally, we treat cross-lingual entity alignment as a process of linking prediction. Experimental results on three real-world cross-lingual entity alignment datasets have shown the effectiveness of DAEA.

The video of this talk cannot be embedded. You can watch it here:
https://underline.io/lecture/6167-dual-attention-network-for-cross-lingual-entity-alignment
(Link will open in new window)
 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at COLING 2020 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers