30/11/2020

Recursive Bayesian Filtering for Multiple Human Pose Tracking from Multiple Cameras

Oh-Hun Kwon, Julian Tanke, Jürgen Gall

Keywords:

Abstract: Markerless motion capture allows the extraction of multiple 3D human poses from natural scenes, without the need for a controlled but artificial studio environment or expensive hardware. In this work we present a novel tracking algorithm which utilizes recent advancements in 2D human pose estimation as well as 3D human motion anticipation. During the prediction step we utilize an RNN to forecast a set of plausible future poses while we utilize a 2D multiple human pose estimation model during the update step to incorporate observations. Casting the problem of estimating multiple persons from multiple cameras as a tracking problem rather than an association problem results in a linear relationship between runtime and the number of tracked persons. Furthermore, tracking enables our method to overcome temporary occlusions by relying on the prediction model. Our approach achieves state-of-the-art results on popular benchmarks for 3D human pose estimation and tracking.

The video of this talk cannot be embedded. You can watch it here:
https://accv2020.github.io/miniconf/poster_376.html
(Link will open in new window)
 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at ACCV 2020 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers