14/06/2020

15 Keypoints Is All You Need

Michael Snower, Asim Kadav, Farley Lai, Hans Peter Graf

Keywords: pose tracking, efficiency, transformers, human pose estimation

Abstract: Pose-tracking is an important problem that requires identifying unique human pose-instances and matching them temporally across different frames in a video. However, existing pose-tracking methods are unable to accurately model temporal relationships and require significant computation, often computing the tracks offline. We present an efficient multi-person pose-tracking method, KeyTrack that only relies on keypoint information without using any RGB or optical flow to locate and track human keypoints in real-time. KeyTrack is a top-down approach that learns spatio-temporal pose relationships by modeling the multi-person pose-tracking problem as a novel Pose Entailment task using a Transformer based architecture. Furthermore, KeyTrack uses a novel, parameter-free, keypoint refinement technique that improves the keypoint estimates used by the Transformers. We achieve state-of-the-art results on PoseTrack'17 and PoseTrack'18 benchmarks while using only a fraction of the computation used by most other methods for computing the tracking information.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at CVPR 2020 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers