13/07/2020

Reinforcement Learning-Based SLC Cache Technique for Enhancing SSD Write Performance

Sangjin Yoo, Dongkun Shin

Keywords:

Abstract: Although quad-level-cell (QLC) NAND flash memory can provide high density, its lower write performance and endurance compared to triple-level-cell (TLC) flash memory are critical obstacles to the proliferation of QLC flash memory. To resolve such problems of QLC flash, hybrid architectures, which program a part of QLC blocks in the single-level-cell (SLC) mode and utilizes the blocks as a cache of remaining QLC blocks, are widely adopted in the commercial solid-state disks (SSDs). However, it is challenging to optimize various parameters of hybrid SSDs such as the SLC cache size and the hot/cold separation threshold. In particular, the parameters must be adjusted dynamically by monitoring the change on I/O workloads. However, current techniques use heuristically determined fixed parameters. This paper proposes a reinforcement learning (RL)-based SLC cache management technique, which observes workload patterns and internal status of hybrid SSD and decides the optimal SLC cache parameters maximizing the efficiency of hybrid SSD. Experimental results show that the proposed technique improves write throughput and write amplification factor by 77.6% and 20.3% on average, respectively, over the previous techniques.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at HotStorage 2020 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers