14/06/2020

Joint Filtering of Intensity Images and Neuromorphic Events for High-Resolution Noise-Robust Imaging

Zihao W. Wang, Peiqi Duan, Oliver Cossairt, Aggelos Katsaggelos, Tiejun Huang, Boxin Shi

Keywords: event cameras, guided filtering, event denoising and super resolution, video frame synthesis, motion deblur, hdr imaging, motion tracking

Abstract: We present a novel computational imaging system with high resolution and low noise. Our system consists of a traditional video camera which captures high-resolution intensity images, and an event camera which encodes high-speed motion as a stream of asynchronous binary events. To process the hybrid input, we propose a unifying framework that first bridges the two sensing modalities via a noise-robust motion compensation model, and then performs joint image filtering. The filtered output represents the temporal gradient of the captured space-time volume, which can be viewed as motion-compensated event frames with high resolution and low noise. Therefore, the output can be widely applied to many existing event-based algorithms that are highly dependent on spatial resolution and noise robustness. In experimental results performed on both publicly available datasets as well as our contributing RGB-DAVIS dataset, we show systematic performance improvement in applications such as high frame-rate video synthesis, feature/corner detection and tracking, as well as high dynamic range image reconstruction.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at CVPR 2020 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers