14/06/2020

Creating Something From Nothing: Unsupervised Knowledge Distillation for Cross-Modal Hashing

Hengtong Hu, Lingxi Xie, Richang Hong, Qi Tian

Keywords: cross-model retrieval, cross-model hashing, unsupervised learning, knowledge distillation, similarity calculation, teacher-student network, supervised learning, unsupervised model guiding supervised model, exploiting information from output features, achieving sota performance

Abstract: In recent years, cross-modal hashing (CMH) has attracted increasing attentions, mainly because its potential ability of mapping contents from different modalities, especially in vision and language, into the same space, so that it becomes efficient in cross-modal data retrieval. There are two main frameworks for CMH, differing from each other in whether semantic supervision is required. Compared to the unsupervised methods, the supervised methods often enjoy more accurate results, but require much heavier labors in data annotation. In this paper, we propose a novel approach that enables guiding a supervised method using outputs produced by an unsupervised method. Specifically, we make use of teacher-student optimization for propagating knowledge. Experiments are performed on two popular CMH benchmarks, i.e., the MIRFlickr and NUS-WIDE datasets. Our approach outperforms all existing unsupervised methods by a large margin.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at CVPR 2020 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers