14/06/2020

Generating and Exploiting Probabilistic Monocular Depth Estimates

Zhihao Xia, Patrick Sullivan, Ayan Chakrabarti

Keywords: monocular depth, depth completion, conditional vae, markov random fields, statistical inference, sample approximation

Abstract: Beyond depth estimation from a single image, the monocular cue is useful in a broader range of depth inference applications and settings---such as when one can leverage other available depth cues for improved accuracy. Currently, different applications, with different inference tasks and combinations of depth cues, are solved via different specialized networks---trained separately for each application. Instead, we propose a versatile task-agnostic monocular model that outputs a probability distribution over scene depth given an input color image, as a sample approximation of outputs from a patch-wise conditional VAE. We show that this distributional output can be used to enable a variety of inference tasks in different settings, without needing to retrain for each application. Across a diverse set of applications (depth completion, user guided estimation, etc.), our common model yields results with high accuracy---comparable to or surpassing that of state-of-the-art methods dependent on application-specific networks.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at CVPR 2020 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers