14/06/2020

Distilling Effective Supervision From Severe Label Noise

Zizhao Zhang, Han Zhang, Sercan Ö. Arik, Honglak Lee, Tomas Pfister

Keywords: robust training, meta learning, noise labels

Abstract: Collecting large-scale data with clean labels for supervised training of neural networks is practically challenging. Although noisy labels are usually cheap to acquire, existing methods suffer a lot from label noise. This paper targets at the challenge of robust training at high label noise regimes. The key insight to achieve this goal is to wisely leverage a small trusted set to estimate exemplar weights and pseudo labels for noisy data in order to reuse them for supervised training. We present a holistic framework to train deep neural networks in a way that is highly invulnerable to label noise. Our method sets the new state of the art on various types of label noise and achieves excellent performance on large-scale datasets with real-world label noise. For instance, on CIFAR100 with a 40% uniform noise ratio and only 10 trusted labeled data per class, our method achieves 80.2% classification accuracy, where the error rate is only 1.4% higher than a neural network trained without label noise. Moreover, increasing the noise ratio to 80%, our method still maintains a high accuracy of 75.5%, compared to the previous best accuracy 48.2%.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at CVPR 2020 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers