14/06/2020

Deep Shutter Unrolling Network

Peidong Liu, Zhaopeng Cui, Viktor Larsson, Marc Pollefeys

Keywords: deep learning, 3d vision, rolling shutter, image rectification

Abstract: We present a novel network for rolling shutter effect correction. Our network takes two consecutive rolling shutter images and estimates the corresponding global shutter image of the latest frame. The dense displacement field from a rolling shutter image to its corresponding global shutter image is estimated via a motion estimation network. The learned feature representation of a rolling shutter image is then warped, via the displacement field, to its global shutter representation by a differentiable forward warping block. An image decoder recovers the global shutter image based on the warped feature representation. Our network can be trained end-to-end and only requires the global shutter image for supervision. Since there is no public dataset available, we also propose two large datasets: the Carla-RS dataset and the Fastec-RS dataset. Experimental results demonstrate that our network outperforms the state-of-the-art methods. We make both our code and datasets available at https://github.com/ethliup/DeepUnrollNet.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at CVPR 2020 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers