03/05/2021

CompOFA – Compound Once-For-All Networks for Faster Multi-Platform Deployment

Manas Sahni, Shreya Varshini, Alind Khare, Alexey Tumanov

Keywords: AutoML, Latency-aware Neural Architecture Search, Efficient Deep Learning

Abstract: The emergence of CNNs in mainstream deployment has necessitated methods to design and train efficient architectures tailored to maximize the accuracy under diverse hardware and latency constraints. To scale these resource-intensive tasks with an increasing number of deployment targets, Once-For-All (OFA) proposed an approach to jointly train several models at once with a constant training cost. However, this cost remains as high as 40-50 GPU days and also suffers from a combinatorial explosion of sub-optimal model configurations. We seek to reduce this search space -- and hence the training budget -- by constraining search to models close to the accuracy-latency Pareto frontier. We incorporate insights of compound relationships between model dimensions to build CompOFA, a design space smaller by several orders of magnitude. Through experiments on ImageNet, we demonstrate that even with simple heuristics we can achieve a 2x reduction in training time and 216x speedup in model search/extraction time compared to the state of the art, without loss of Pareto optimality! We also show that this smaller design space is dense enough to support equally accurate models for a similar diversity of hardware and latency targets, while also reducing the complexity of the training and subsequent extraction algorithms. Our source code is available at https://github.com/gatech-sysml/CompOFA

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at ICLR 2021 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers