Abstract:
Recently convolutional networks have shown significant promise for modeling sequential user interactions for recommendations. Critically, such networks rely on fixed convolutional kernels to capture sequential behavior. In this paper, we argue that all the dynamics of the item-to-item transition in session-based settings may not be observable at training time. Hence we propose DynamicRec, which uses dynamic convolutions to compute the convolutional kernels on the fly based on the current input. We show through experiments that this approach significantly outperforms existing convolutional models on real datasets in session-based settings.