14/06/2020

MnasFPN: Learning Latency-Aware Pyramid Architecture for Object Detection on Mobile Devices

Bo Chen, Golnaz Ghiasi, Hanxiao Liu, Tsung-Yi Lin, Dmitry Kalenichenko, Hartwig Adam, Quoc V. Le

Keywords: neural architecture search, object detection, feature pyramid networks, on-device detection, mobile vision, multi-objective nas, connectivity search, inverted bottlenecks

Abstract: Despite the blooming success of architecture search for vision tasks in resource-constrained environments, the design of on-device object detection architectures have mostly been manual. The few automated search efforts are either centered around non-mobile-friendly search spaces or not guided by on-device latency. We propose MnasFPN, a mobile-friendly search space for the detection head, and combine it with latency-aware architecture search to produce efficient object detection models. The learned MnasFPN head, when paired with MobileNetV2 body, outperforms MobileNetV3+SSDLite by 1.8 mAP at similar latency on Pixel. It is both 1 mAP more accurate and 10\% faster than NAS-FPNLite. Ablation studies show that the majority of the performance gain comes from innovations in the search space. Further explorations reveal an interesting coupling between the search space design and the search algorithm, for which the complexity of MnasFPN search space is opportune.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at CVPR 2020 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers