Abstract:
Recommender systems (RS) play a focal position in modern user-centric online services. Among them, collaborative filtering (CF) approaches have shown leading accuracy performance compared to content-based filtering (CBF) methods. Their success is due to an effective exploitation of similarities/correlations encoded in user interaction patterns, which is computed by considering common items users rated in the past. However, their strength is also their weakness. Indeed, a malicious agent can alter recommendations by adding fake user profiles into the platform thereby altering the actual similarity values in an engineered way.