01/07/2020

End-to-End Offline Speech Translation System for IWSLT 2020 using Modality Agnostic Meta-Learning

Nikhil Kumar Lakumarapu, Beomseok Lee, Sathish Reddy Indurthi, Hou Jeung Han, Mohd Abbas Zaidi, Sangha Kim

Keywords:

Abstract: In this paper, we describe the system submitted to the IWSLT 2020 Offline Speech Translation Task. We adopt the Transformer architecture coupled with the meta-learning approach to build our end-to-end Speech-to-Text Translation (ST) system. Our meta-learning approach tackles the data scarcity of the ST task by leveraging the data available from Automatic Speech Recognition (ASR) and Machine Translation (MT) tasks. The meta-learning approach combined with synthetic data augmentation techniques improves the model performance significantly and achieves BLEU scores of 24.58, 27.51, and 27.61 on IWSLT test 2015, MuST-C test, and Europarl-ST test sets respectively.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at ACL Workshops virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers