08/12/2020

An Empirical Study on Multi-Task Learning for Text Style Transfer and Paraphrase Generation

Pawel Bujnowski, Kseniia Ryzhova, Hyungtak Choi, Katarzyna Witkowska, Jaroslaw Piersa, Tymoteusz Krumholc, Katarzyna Beksa

Keywords:

Abstract: The topic of this paper is neural multi-task training for text style transfer. We present an efficient method for neutral-to-style transformation using the transformer framework. We demonstrate how to prepare a robust model utilizing large paraphrases corpora together with a small parallel style transfer corpus. We study how much style transfer data is needed for a model on the example of two transformations: neutral-to-cute on internal corpus and modern-to-antique on publicly available Bible corpora. Additionally, we propose a synthetic measure for the automatic evaluation of style transfer models. We hope our research is a step towards replacing common but limited rule-based style transfer systems by more flexible machine learning models for both public and commercial usage.

The video of this talk cannot be embedded. You can watch it here:
https://underline.io/lecture/6115-an-empirical-study-on-multi-task-learning-for-text-style-transfer-and-paraphrase-generation
(Link will open in new window)
 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at COLING Workshops 2020 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers