06/12/2020

Adaptive Online Estimation of Piecewise Polynomial Trends

Dheeraj Baby, Yu-Xiang Wang

Keywords:

Abstract: We consider the framework of non-stationary stochastic optimization [Besbes et.al. 2015] with squared error losses and noisy gradient feedback where the dynamic regret of an online learner against a time varying comparator sequence is studied. Motivated from the theory of non-parametric regression, we introduce a \emph{new variational constraint} that enforces the comparator sequence to belong to a discrete $k^{th}$ order Total Variation ball of radius $C_n$. This variational constraint models comparators that have piece-wise polynomial structure which has many relevant practical applications [Tibshirani2015]. By establishing connections to the theory of wavelet based non-parametric regression, we design a \emph{polynomial time} algorithm that achieves the nearly \emph{optimal dynamic regret} of $\tilde{O}(n^{\frac{1}{2k+3}}C_n^{\frac{2}{2k+3}})$. The proposed policy is \emph{adaptive to the unknown radius} $C_n$. Further, we show that the same policy is minimax optimal for several other non-parametric families of interest.

 1
 1
 1
 1
This is an embedded video. Talk and the respective paper are published at NeurIPS 2020 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers