26/08/2020

Online Convex Optimization with Perturbed Constraints: Optimal Rates against Stronger Benchmarks

Victor Valls, George Iosifidis, Douglas Leith, Leandros Tassiulas

Keywords:

Abstract: This paper studies Online Convex Optimization (OCO) problems where the constraints have additive perturbations that (i) vary over time and (ii) are not known at the time to make a decision. Perturbations may not be i.i.d.\ generated and can be used, for example, to model a time-varying budget or time-varying requests in resource allocation problems. Our goal is to design a policy that obtains sublinear regret and satisfies the constraints in the long-term. To this end, we present an online primal-dual proximal gradient algorithm that has $O(T^\epsilon \vee T^{1-\epsilon})$ regret and $O(T^\epsilon)$ constraint violation, where $\epsilon \in [0,1)$ is a parameter in the learning rate. The proposed algorithm obtains optimal rates when $\epsilon = 1/2$, and can compare against a stronger comparator (the set of fixed decisions in hindsight) than previous work.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at AISTATS 2020 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd

Similar Papers