04/08/2021

Black-Box Control for Linear Dynamical Systems

Xinyi Chen, Elad Hazan

Keywords:

Abstract: We consider the problem of black-box control: the task of controlling an unknown linear time-invariant dynamical system from a single trajectory without a stabilizing controller. Under the assumption that the system is controllable, we give the first {\it efficient} algorithm that is capable of attaining sublinear regret under the setting of online nonstochastic control. This resolves an open problem since the work of Abbasi-Yadkori and Szepesvari(2011) on the stochastic LQR problem, and in a more challenging setting that allows for adversarial perturbations and adversarially chosen changing convex loss functions. We give finite-time regret bounds for our algorithm on the order of $2^{poly(d)} + \tilde{O}(poly(d) T^{2/3})$ for general nonstochastic control, and $2^{poly(d)} + \tilde{O}(poly(d) \sqrt{T})$ for black-box LQR. To complete the picture, we investigate the complexity of the online black-box control problem and give a matching regret lower bound of $2^{\Omega(d)}$, showing that the exponential cost is inevitable. This lower bound holds even in the noiseless setting, and applies to any, randomized or deterministic, black-box control method.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at COLT 2021 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers