06/12/2020

Stochasticity of Deterministic Gradient Descent: Large Learning Rate for Multiscale Objective Function

Lingkai Kong, Molei Tao

Keywords: Deep Learning -> Efficient Inference Methods, Algorithms -> Boosting and Ensemble Methods

Abstract: This article suggests that deterministic Gradient Descent, which does not use any stochastic gradient approximation, can still exhibit stochastic behaviors. In particular, it shows that if the objective function exhibit multiscale behaviors, then in a large learning rate regime which only resolves the macroscopic but not the microscopic details of the objective, the deterministic GD dynamics can become chaotic and convergent not to a local minimizer but to a statistical distribution. In this sense, deterministic GD resembles stochastic GD even though no stochasticity is injected. A sufficient condition is also established for approximating this long-time statistical limit by a rescaled Gibbs distribution, which for example allows escapes from local minima to be quantified. Both theoretical and numerical demonstrations are provided, and the theoretical part relies on the construction of a stochastic map that uses bounded noise (as opposed to Gaussian noise).

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at NeurIPS 2020 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers