06/12/2021

Machine learning structure preserving brackets for forecasting irreversible processes

Kookjin Lee, Nathaniel Trask, Panos Stinis

Keywords: deep learning, machine learning

Abstract: Forecasting of time-series data requires imposition of inductive biases to obtain predictive extrapolation, and recent works have imposed Hamiltonian/Lagrangian form to preserve structure for systems with \emph{reversible} dynamics. In this work we present a novel parameterization of dissipative brackets from metriplectic dynamical systems appropriate for learning \emph{irreversible} dynamics with unknown a priori model form. The process learns generalized Casimirs for energy and entropy guaranteed to be conserved and nondecreasing, respectively. Furthermore, for the case of added thermal noise, we guarantee exact preservation of a fluctuation-dissipation theorem, ensuring thermodynamic consistency. We provide benchmarks for dissipative systems demonstrating learned dynamics are more robust and generalize better than either "black-box" or penalty-based approaches.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at NeurIPS 2021 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers