06/12/2020

Learning discrete distributions with infinite support

Doron Cohen, Aryeh Kontorovich, Geoffrey Wolfer

Keywords:

Abstract: We present a novel approach to estimating discrete distributions with (potentially) infinite support in the total variation metric. In a departure from the established paradigm, we make no structural assumptions whatsoever on the sampling distribution. In such a setting, distribution-free risk bounds are impossible, and the best one could hope for is a fully empirical data-dependent bound. We derive precisely such bounds, and demonstrate that these are, in a well-defined sense, the best possible. Our main discovery is that the half-norm of the empirical distribution provides tight upper and lower estimates on the empirical risk. Furthermore, this quantity decays at a nearly optimal rate as a function of the true distribution. The optimality follows from a minimax result, of possible independent interest. Additional structural results are provided, including an exact Rademacher complexity calculation and apparently a first connection between the total variation risk and the missing mass.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at NeurIPS 2020 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers