16/11/2020

SAM: Squeeze-and-Mimic Networks for Conditional Visual Driving Policy Learning

Albert Zhao, Tong He, Yitao Liang, Haibin Huang, Guy Van den Broeck, Stefano Soatto

Keywords:

Abstract: We describe a policy learning approach to map visual inputs to driving controls conditioned on turning command that leverages side tasks on semantics and object affordances via a learned representation trained for driving. To learn this representation, we train a squeeze network to drive using annotations for the side task as input. This representation encodes the driving-relevant information associated with the side task while ideally throwing out side task-relevant but driving-irrelevant nuisances. We then train a mimic network to drive using only images as input and use the squeeze network’s latent representation to supervise the mimic network via a mimicking loss. Notably, we do not aim to achieve the side task nor to learn features for it; instead, we aim to learn, via the mimicking loss, a representation of the side task annotations directly useful for driving. We test our approach using the CARLA simulator. In addition, we introduce a more challenging but realistic evaluation protocol that considers a run that reaches the destination successful only if it does not violate common traffic rules.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at CoRL 2020 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers