16/11/2020

Learning Interactively to Resolve Ambiguity in Reference Frame Selection

Giovanni Franzese, Carlos Celemin, Jens Kober

Keywords:

Abstract: In Learning from Demonstrations, ambiguities can lead to bad generalization of the learned policy. This paper proposes a framework called Learning Interactively to Resolve Ambiguity (LIRA), that recognizes ambiguous situations, in which more than one action have similar probabilities, avoids a random action selection, and uses the human feedback for solving them. The aim is to improve the user experience, the learning performance and safety. LIRA is tested in the selection of the right goal of Movement Primitives (MP) out of a candidate list if multiple contradictory generalizations of the demonstration(s) are possible. The framework is validated on different pick and place operations on a Emika-Franka Robot. A user study showed a significant reduction on the task load of the user, compared to a system that does not allow interactive resolution of ambiguities.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at CoRL 2020 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers