16/11/2020

Interactive Imitation Learning in State-Space

Snehal Jauhri, Carlos Celemin, Jens Kober

Keywords:

Abstract: Imitation Learning techniques enable programming the behaviour of agents through demonstrations rather than manual engineering. However, they are limited by the quality of available demonstration data. Interactive Imitation Learning techniques can improve the efficacy of learning since they involve teachers providing feedback while the agent executes its task. In this work, we propose a novel Interactive Learning technique that uses human feedback in state-space to train and improve agent behaviour (as opposed to alternative methods that use feedback in action-space). Our method titled Teaching Imitative Policies in State-space (TIPS) enables providing guidance to the agent in terms of `changing its state’ which is often more intuitive for a human demonstrator. Through continuous improvement via corrective feedback, agents trained by non-expert demonstrators using TIPS outperformed the demonstrator and conventional Imitation Learning agents.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at CoRL 2020 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers