16/11/2020

Relational Learning for Skill Preconditions

Mohit Sharma, Oliver Kroemer

Keywords:

Abstract: To determine if a skill can be executed in any given environment, a robot needs to learn the preconditions for the skill. As robots begin to operate in dynamic and unstructured environments, these precondition models will need to generalize to variable number of objects with different shapes and sizes. In this work, we focus on learning precondition models for manipulation skills in unconstrained environments. Our work is motivated by the intuition that many complex manipulation tasks, with multiple objects, can be simplified by focusing on less complex pairwise object relations. We propose an object-relation model that learns continuous representations for these pairwise object relations. Our object-relation model is trained completely in simulation, and once learned, is used by a separate precondition model to predict skill preconditions for real world tasks. We evaluate our precondition model on 3 different manipulation tasks: sweeping, cutting, and unstacking. We show that our approach leads to significant improvements in predicting preconditions for all 3 tasks, across objects of different shapes and sizes.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at CoRL 2020 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers